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Abstract— We present a novel method for rapid removal of
patient scatter from cone beam (CB) projection images that
requires no scatter measurement, physical modeling or strong
assumptions regarding the spatial smoothness of the scatter
distribution. Method: A modulator grid is placed between
the imaged distribution and the detector that differentially
frequency modulates primary and scattered photons. When
photons travel through the grid, photons that originate directly
from the CB source are modulated by a higher frequency than
scattered photons that have more proximal, diffusely distributed
sources. We employ non-linear Fourier domain filtering to
attenuate the contribution of scatter to the image spectrum.
The theoretical validity of the method is verified using linear
analysis of planar sources and its performance is evaluated
using a simulator based on this analytical model. Results:
Simulation experiments with an ideal modulator indicate that
even unrealistically large amounts of scatter are almost entirely
removed by this method. The recovered images are devoid of
major artifacts and exhibit an RMS error of 10%. Conclusions:
We have verified the theoretical validity of scatter removal via
spatial frequency modulation. A disadvantage of the technique
is that it will always produce a filtered image having at best 0.41
of the maximum detector resolution when maximum scatter
rejection is desired. This is not a major consideration in most
medical X-ray CB imaging applications using contemporary
detector technology, especially since scatter often significantly
reduces useful resolution.

I. I NTRODUCTION

Cone beam projection imagers offer increased simulta-
neous field-of-view over fan beam based systems. This is
especially important for applications involving fluoroscopy,
radiation therapy and in dynamic CT (4D) studies where
tissue motion and contrast agent flow must be recovered from
a set of time-gated projections. Also, the routine use of X-
ray CT for diagnostic purposes is currently limited by the
large radiation dose of full-body scans. Cone beam systems
allow for more efficient collection of photons and hence for
lower dose rates. However, the lack of collimation leads to
large amounts of scatter which decreases the attractiveness
of general diagnostic cone beam CT (CBCT) systems.

Many methods of scatter reduction and compensation have
been proposed in the past. Most methods are based on
simplified models of scatter physics, simplified geometrical
descriptions of the imaged distribution, or make assumptions
relating to the smoothness of the scatter distribution in the
projection images [1], [2], [3]. Full Monte Carlo simulation
methods are too time consuming for practical use in real-
time imaging applications [4]. Beam-stop arrays can be used
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to measure scatter directly, but require the acquisition of
two sets of projection images, which is inconvenient [5]. We
present a method that makes no assumptions regarding the
imaged distribution (other than limited bandwidth), imposes
low computational burden, and requires no increase in the
number of acquired images.

II. M ODULATION SCHEME FOR PLANAR OBJECT AND

SOURCES

Consider a planar source distributions(x,y). A planar
object t(x,y) is placed at distanced0 from the source along
the z-axis. At a distanced1 ≥ d0 is the modulator plane
tm(x,y) and the detector lies atz= d2 ≥ d1.

Consider the modulator plane transmission function sup-
ported onx,y∈ [−W,W]:

tm(x,y,z= d1) = A
[
B+cos(2πu0x+v0y)

]×
rect

( x
W

,
y

W

)
. (1)

whereu0 andv0 are the horizontal and vertical frequencies,
respectively. The cosine is chosen with orientation along the
image diagonal as this allows modulation to be performed
closest to the maximum frequency that can be represented
in the image. This in turn maximizes the resolution of the
recovered image.

For those photons arriving at the modulator from the
source (unscattered photons), we may translate the modulator
to the object plane. During this translation, demagnification
by:
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occurs giving:
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The image that forms from the direct unscattered photons
is then:
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where:
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d0
, m2 =−d2−d0

d0
= 1−M2

and the operator “∗” denotes 2D convolution.



The Fourier transform of this image is:
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Now we consider the scatter image. We assume that each
point in the image is an isotropic scatter source giving:

o(x,y) = α(1− t(x,y))

whereα is an efficiency factor that is assumed equal for all
sources on the object plane. The scatter image is then:
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This has the Fourier transform:
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Comparing the expressions for the FTs of the direct image
id (2) and scatter imageis (4), we see that the former
is modulated to the coordinates(±u0M′/M1,±v0M′/M1)
on the Fourier plane while the latter ismultiplied by the
final factor in (4). The fact that this is a multiplication
rather than a convolution stems from the diffuse, unfocused
nature of the source. The spectrumIs will have magnitude
peaks at the origin and around(±u0/M1,±v0/M1). Since
M′/M2 > 1/M1, the direct image is modulated to frequency
that is higher than the peak of the scatter spectrum. These
two mechanisms enable the efficient removal of scatter.

III. S IMULATION AND RESULTS

We now demonstrate the ability of the method to remove
scatter from the contaminated image shown in Figure 1. We
consider a CB imaging system having a realistic geometry
in which the source-to-object distancez= d0 = 0.85m, the
modulator plane is atz=d1=1.25m and the detector lies at
z=d2=1.40m. The detector has 1024 pixels per side length
of 0.4m.

While we simulate using a planar object, we note that the
ability to remove scatter is based on the separation along
the z-axis of the cone source and the scatter sources. The
performance is thus limited by the distance between the cone
source and the most proximal object plane. We have thus
chosen an object plane 15cm proximal to the source from
the imaging system isocenter. All object planes distal to this
plane will appear closer to the origin of the spectrum and
their scatter contributions will consequently will not limit the
performance of this method.

In order to make maximum use of the available detec-
tor bandwidth, we wish to modulate the spectrum by the
maximum amount possible. The maximum horizontal and
vertical frequencies than can be recorded by this detector
are un=vn=1280 line-pairs per meter (lp/m). As shown in
Figure 2, we can at most fit the image baseband spectrum
and 2 modulated copies along the diagonal of the frequency
plane. This limits the maximum image bandwidth toρd =
1/(
√

2+2)un ≈ 0.4142un = 530.19 lp/m. This constitutes a
reasonable bandwidth for medium to high quality medical X-
ray images. The object in Figure 1 contains a jinc function
(J1(πr)/2r, whereJ1 is a Bessel function of the first kind),
which has uniform radial frequency content. This makes the
spectral support of the primary image more easily visible.
The modulator frequency is fully determined by the above
analysis withu0 = v0 =(d2/d1)

√
2ρd = 839.78 lp/m. In the

detector plane, the effective modulator frequency isum=vm=√
2ρd =749.81 lp/m.

The spectral peaks for the scatter originating at the plane
at z = d0 lie at us = vs =±u0/M1 =±610.75 lp/m. These
fall within quadrant III of the modulated image spectrum
at (um,vm) and quadrant I of that at(−um,−vm). These
quadrants consequently suffer significant corruption from
scatter. However, sinceid is real, we may reconstruct ei-
ther quadrant by exploiting the conjugate symmetry of the
Fourier transform and the fact that the other 3 quadrants
are not significantly affected. Before an image spectrum
(say the copy at(um,vm), which we denoteFm(u,v)) is
reconstructed, it is copied to a clean Fourier plane and re-
stored to baseband using the Fourier shift theorem:Fr(u,v) =
Fm(u,v)e j2π(−umx−vmy). Information from quadrants I,II and
IV is used to create a spectrum of a real image. This is
then inverse Fourier transformed to yield the filtered image
fr(x,y). Figure 4 shows that the reconstructed image contains
no visible traces of scatter. Resolution is slightly reduced,
and some minor artifacts are visible. We quantify the RMS
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Fig. 1. The left figure shows the true planar object while right shows the
same object plus simulated isotropic scatter.
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Fig. 2. Left: Log magnitude spectrum of the object shown at left of Figure
1. Right: Log magnitude spectrum of scatter image.

percentage error as:

E =

√
∑i( f i

r − f i)2
√

∑i( f i)2
×100

where f i
r and f i are theith pixels of the recovered and orig-

inal object images, respectively. For this example, we find
E = 10.44%. This is consistent with the subjective evaluation
of the reconstructed image and the small amplitude of the
absolute difference image at the right of Figure 4.

Fig. 3. Log magnitude spectrum of the object shown at right of Figure 1
after modulation. Note the scatter spectral peaks that appear on the diagonal
between the baseband spectral copy and the modulated image spectral
copies.

Final recovered image: quadrant reconstruction
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Fig. 4. Upper: Image from which scatter has been removed. Lower:
Absolute difference image between true and recovered images.

IV. CONCLUSION

The performance of the modulator in these preliminary
simulations is very encouraging and motivates for the im-
plmentation this method. Before this is possible, numerous
practical concerns must be addressed. In X-ray imaging, we
are normally concerned with generating images that consis-
tute attenuation maps of the imaged distribution. However,
in our modulation scheme, it is the photon fluence that must
be modulated using an attenuating modulator. Consider the
fluence along a single ray incident at the detector:

φ(x,y) = φ0e−
∫
L µ(x,y,z)dl .

Here, φ0 is the fluence originating at the cone source that
traverses the imaged distribution along the pathL. The
attenuation distribution of the imaged object is denoted as
µ(x,y,z). Since fluence is physically non-negative, we must
multiply φ(x,y) by tm in (1) and ensureB≥ 1:

φm(x,y) = φ0e−
∫
L µ(x,y,z)dl A

[
B+cos(2πu0x+v0y)

]
.

Since the modulator is attenuating,A ≤ 1. The maximum
fractional modulation is achieved forB = 1. Let τ(x,y)
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Fig. 5. Shape of the modulator profile.

represent the spatially-varying thickness (along the z-axis) of
the physical modulator. To produce the desired modulation
we must have:

τ(x,y) =− ln(1/2
[
1+cos(2πu0x+v0y)

]
)/µm

where µm is the density of the modulator material. Since
τ(x,y) ≥ 0, the argument of the logarithm must be in the
interval (0,1] and thusA = 1/2 for optimal modulation.
Figure 5 illustrates the modulator profile. The effects of
the singularities inτ(x,y) are reduced by adding a small
positive number to the argument of the logarithm. We expect
the fabrication of a modulator having this profile to pose
practical difficulties that may be surmounted using multilayer
material patterning and lamination technologies.

The above analysis ignores the obliquity of rays incident
on the modulator. For this reason, the device should be
designed to be as thin as possible.
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